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Abstract We introduce the Characteristic Curvature as the curvature of the tra-

jectories of the Hamiltonian vector field with respect to the normal direction to

the isoenergetic surfaces; by using the Second Fundamental Form we relate it to

the Classical and Levi Mean Curvature. Then we prove existence and uniqueness

of viscosity solutions for the related Dirichlet problem and we show the Lipschitz

regularity of the solutions under suitable hypotheses. At the end we show that

neither Strong Comparison Principle nor Hopf Lemma hold for the Characteristic

Curvature Operator.

1 Introduction

In this paper we introduce the Characteristic Curvature as the curvature of
the trajectories of the Hamiltonian vector field with respect to the normal di-
rection to the isoenergetic surfaces. Namely, let H be a smooth Hamiltonian
function on Rn+1×Rn+1 equipped with its standard symplectic structure J ;
then the level set M of H, corresponding to some noncritical energy value
E, is a smooth hypersurface in R2n+2. The Hamiltonian vector field XH

is the tangent vector field to M , defined by XH := JDH. The orbits of
XH are the critical points of the Action functional defined on a suitable
space of curves; therefore they represent the trajectories of the motion in
the generalized phase space. In particular they are curves on M : we will
define the characteristic curvature CM as the normalized curvature of these
curves with respect to the unit normal direction to M ; we will say that M
is strictly C-convex if CM > 0. Later, since M is a real hypersurface in
Cn+1, by using the Second Fundamental Form and the Levi Form we relate
CM to the Classical Mean Curvature HM and to the Levi Mean Curvature
LM . We want explicitly to note that the characteristic curvature CM can
be used to obtain characterization properties: in fact, following some results
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obtained by Hounie and Lanconelli ([7], [8]) in which they prove Alexandrov
type theorems for Reinhardt domains by using the Levi Mean Curvature,
it is proved in [11] an analogous symmetry result for Reinhardt domains,
starting from the characteristic curvature CM .
Denoting by T the related differential operator, we will find the explicit
expression T u = tra

(
Ã(Du)D2u

)
, being Ã a symmetric matrix defined in

the sequel. The characteristic curvature operator T is a quasilinear (highly)
degenerate elliptic operator on R2n+1: in fact the principal part has 2n
distinct eigenvectors corresponding to the eigenvalue zero and only one di-
rection of positivity. Let Ω be a bounded open set in R2n+1, then under
suitable hypotheses we will prove existence and uniqueness of viscosity solu-
tions for the associated Dirichlet Problem, with prescribed curvature func-
tion k ∈ C(Ω× R):{

F (x, u,Du,D2u) := −tra(Ã(Du)D2u) + k(x, u) = 0 in Ω,
u(x) = ϕ(x), on ∂Ω,

(DP )

where ϕ ∈ C(∂Ω). In order to do that we will use the classical tools intro-
duced by Crandall, Ishii, Lions in [3], [9] and we will give geometric sufficient
conditions on Ω and on the prescribed curvature k in order to ensure the
existence of sub- and supersolutions for (DP ). Namely, if we denote by
Ωc := ∂Ω × R, the cylinder type hypersurface in R2n+2, then we will as-
sume:
let Ωc be a strictly C-convex hypersurface, then

sup
s∈R

k(x, s) < CΩc
x , for every x ∈ ∂Ω; (1)

and
let R be the radius of the smallest ball containing Ω, then

sup
Ω×R

k ≤ 1

R
(2)

We will prove the following result:

Theorem 1.1. Let ∂Ω ∈ C2 and suppose (1) and (2) hold. If k is either
strictly increasing with respect to u or non-decreasing with respect to u but
independent of x, then there exists a unique viscosity solution for (DP ).

Later we will prove the Lipschitz regularity of solutions: first we use a Bern-
stein method to obtain a gradient bound for the solutions of the regularized
equation and then we use a limit process argument. In particular we need
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a slightly stronger assumption than (1):
let Ωc be a strictly C-convex hypersurface such that there exists a defining
function for Ω, ρ ∈ C2,α, 0 < α < 1, with 4ρ > 0 on ∂Ω, then

sup
s∈R

k(x, s) < CΩc
x for every x ∈ ∂Ω. (3)

Remark 1.2. The hypothesis of having a defining function with 4ρ > 0 is
obviously fulfilled if ∂Ω is strictly convex; it is also satisfied if the cylinder
Ωc is strictly pseudoconvex as hypersurface in Cn+1.

Therefore we prove:

Theorem 1.3. Let us suppose that the hypotheses (2) and (3) hold. Let
k ∈ C1(Ω× R) and ϕ ∈ C2,α(∂Ω), 0 < α < 1. If

i)
∂k

∂u
≥ 0 (4)

ii)k2 −
2n+1∑
k=1

∣∣∣∣ ∂k∂xk
∣∣∣∣ ≥ 0 (5)

then (DP ) has a Lipschitz continuous viscosity solution. Moreover, if k is
either strictly increasing with respect to u or non-decreasing with respect to
u but independent of x then the solution is unique.

We then show a non-existence result on balls when the prescribed curva-
ture is a positive constant. Similar results were proved by Slodkowski and
Tomassini in [13] for the Levi equation in the case n = 1; by Martino and
Montanari in [12] for the Mean Levi Curvature; by Slodkowski and Tomassini
in [14] and by Da Lio and Montanari in [4] for the Levi Monge Ampère equa-
tion.
At the end, by mean of two counterexamples, we will show that neither the
Strong Comparison Principle nor the Hopf Lemma hold for the operator
T . This is substantial difference between the highly degenerate Character-
istic operator and the Levi Curvature operators, for which Lanconelli and
Montanari in [10] proved the Strong Comparison Principle: indeed the prin-
cipal part of Levi Curvature operators is degenerate only with respect to
one direction and when computed on strictly pseudoconvex functions, the
2n vector fields, respect to which the operator is strictly elliptic, satisfy the
Hörmander rank condition.
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2 The characteristic curvature

Here we recall some known facts and we refer for instance to [6] for a full
detailed exposition. Let us consider z = (x, y) ∈ Rn+1 × Rn+1. We will
denote by λ = (1/2)

∑n+1
k=1(ykdxk−xkdyk) the standard Liouville differential

1-form and by ω := dλ the canonical symplectic 2-form. We will also denote
by g the standard scalar product in R2n+2, and by J the canonical symplectic
matrix in R2n+2. Let us consider a smooth Hamiltonian function H : Rn+1×
Rn+1 → R, z = (x, y) 7−→ H(x, y) = H(z), and let M be the isoenergetic
hypersurface in R2n+2 defined by M = {z ∈ R2n+2 : H(z) = E}, with
DH(z) 6= 0 for all z ∈ M , where E is some constant. The trajectories of
motion are solutions of the following first order system (Hamilton)

ẋk =
∂H

∂yk
(x, y), ẏk = − ∂H

∂xk
(x, y), k = 1, . . . , n+ 1 (6)

Moreover if γ solves (6), then γ ⊆ M . Now we introduce the Hamiltonian
vector field XH

z := JDH(z); then the Hamilton system (6) rewrites as
γ̇ = XH

γ . We explicitly remark that the direction given by the Hamiltonian
vector field only depends on M and J . By taking the restriction of ω on
TM , one has

rank(ω|TM ) = 2n and dim(ker(ω|TM )) = 1

We introduce then the following one-dimensional subspace of the tangent
space:

Kz = {ξ ∈ TzM : ω(v, ξ) = 0, ∀v ∈ TzM}

A smooth curve γ ⊆ M , such that γ̇ ∈ Kγ is called a characteristic curve
on M . Since

ω(v,XH) = ω(v, JDH) = g(v,DH) = 0, ∀v ∈ TM,

therefore XH
z ∈ Kz, ∀z ∈M , and its orbits are characteristic curves on M .
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Remark 2.1. Since ker(ω|TM ) is a one-dimensional subspace and XH

(which never vanishes) always belongs to ker(ω|TM ), then a smooth curve
γ ⊆M is characteristic, up to reparametrization, if and only if γ̇ = XH .

We want to compute the curvature of the characteristic curves with respect
to the normal direction to M .

Definition 2.2. Let ε > 0 and let γ : (−ε, ε) → M be any smooth curve
such that γ(0) = z ∈ M and γ̇(0) ∈ Kγ(0). We will call the characteristic
curvature of M at z the following

CMz :=
g(γ̈(0), Nz)

|γ̇(0)|2

where Nz is a unit normal direction to M at z. We will say that M is
strictly C-convex if CMz > 0, for every z ∈M .

We can obtain a formula for the characteristic curvature explicitly involving
only the characteristic curves. In fact, let γ ⊆ M be a characteristic curve,
then a unit normal direction along γ is given by Nγ = Jγ̇/|γ̇|, and therefore

CMγ :=
g(γ̈, Jγ̇)

|γ̇|3

Remark 2.3. By the previous formula we can see that the characteristic
curvature is a scalar invariant under (rigid) symplectic diffeomorphisms.

We will add some explicit examples at the end of the paper.

3 Relation with the Classical and Levi Mean Cur-
vature

Let M be a smooth real hypersurface in Cn+1 and let us identify Cn+1 ≈
R2n+2, with z = (z1, . . . , zn+1), zk = x + iy ' (xk, yk). A defining function
for M is a function f : Cn+1 → R such that

Ω = {z ∈ Cn+1 : f(z) < 0}, M = ∂Ω = {z ∈ Cn+1 : f(z) = 0},

and Df 6= 0 on ∂Ω. Let N = −Df/|Df | be the (inner, if M is compact)
unit normal, we define the characteristic direction T ∈ TM as T := −J(N).
Therefore the characteristic direction for M is the normalized Hamiltonian
vector field. The complex maximal distribution or Levi distribution HM is

5



the largest subspace in TM invariant under the action of J , namely HM =
TM ∩ J(TM). Moreover TM splits into a direct sum, TM = HM ⊕g RT
where dim(HM) = 2n and the sum is g-orthogonal. Let us denote by ∇
the Levi-Civita connection in Cn+1 and by h the Second Fundamental Form
on TM . The Levi Form l is the hermitian operator on HM defined in the
following way: ∀X1, X2 ∈ HM , if Z1 = X1− iJ(X1) and Z2 = X2− iJ(X2),
then

l(Z1, Z̄2) = g(∇Z1Z̄2, N) (7)

We can compare the Levi Form with the Second Fundamental Form (see [2],
Chap.10, Theorem 2):

∀X ∈ HM, l(Z, Z̄) = h(X,X) + h(J(X), J(X)) (8)

Let {X1, . . . , Xn, Y1, . . . , Yn}, with Yk = JXk, be an orthonormal basis of the
horizontal space HM ; then the Second Fundamental Form has the following
structure

h =

 h(Xk, Xk) h(Xk, Yj) h(Xk, T )
h(Yj , Xk) h(Yj , Yj) h(Yj , T )
h(T,Xk) h(T, Yk) h(T, T )


with k, j = 1, . . . , n. Moreover, by the very definition of characteristic cur-
vature we have hz(T, T ) = g(∇TT,N) = CMz , for every z ∈M .

Remark 3.1. In this setting we see that the characteristic curvature depends
only on M and on the complex structure J , therefore it is a scalar invariant
under (rigid) holomorphic diffeomorphisms.

The classical Mean Curvature HM and the Levi Mean Curvature LM are
respectively:

HM =
1

2n+ 1
tra(h), LM =

1

n
tra(l) (9)

Therefore a direct computation leads to the relation between HM , LM and
CM :

(2n+ 1)HM = (2nLM + CM ) (10)

4 The operator

Here we find an explicit formula for CM that involves a defining function f .
A direct computation shows that for any z ∈M we have:

CMz :=
1

|Df(z)|3
g(D2f(z)JDf(z), JDf(z)) =

1

|Df(z)|3
tra
(
A(Df(z))D2f(z)

)
6



where A is the following (2n+ 2)× (2n+ 2) symmetric matrix:

A(Df(z)) =

(
fy ⊗ fy −fy ⊗ fx
−fx ⊗ fy fx ⊗ fx

)
We define the characteristic curvature operator T as the differential second
order operator acting on f in the following way:

T f(z) :=
1

|Df(z)|3
tra
(
A(Df(z))D2f(z)

)
We are interested in finding an expression for T when we locally consider
the hypersurface M as the graph of some function u : R2n+1 ⊇ Ω→ R such
that (ξ, u(ξ)) ∈M for all ξ ∈ Ω. In order to do that, we set

x = (x1, . . . , xn), y = (y1, . . . , yn), xn+1 = t, yn+1 = s, ξ = (x, y, t)

and we take as defining function

f(z) = f(x, y, t, s) = u(x, y, t)− s = u(ξ)− s, |Df |2 = 1 + |Du|2

Then we have

T u :=
1

(1 + |Du|2)
3
2

tra
(
A(Du)D2u

)
where A is the following symmetric matrix:

A(Du) =

 uy ⊗ uy −uy ⊗ ux −uy
−ux ⊗ uy ux ⊗ ux ux

−uy ux 1

 (11)

Example 4.1 (n=1). Let Ω ⊆ R3 be an open set, and u : Ω → R a C2

function. Then

T u =
1

(1 + |Du|2)
3
2

(
u2
yuxx + u2

xuyy + utt − 2uxuyuxy + 2uxuyt − 2uyuxt

)
The characteristic curvature operator T is a second order quasilinear (highly)
degenerate elliptic operator on R2n+1: in fact, by (11) we see that the fol-
lowing 2n independent vector fields

∂xk + uyk∂t , ∂yk − uxk∂t , k = 1, . . . , n

are eigenvectors for A with eigenvalue identically equals to zero; instead the
vector field

−uy1∂x1 − uyn∂xn + ux1∂y1 + uxn∂yn + ∂t
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is an eigenvector for A with eigenvalue equals to (1 + |ux|2 + |uy|2). For the

sake of simplicity we will call Ã(p) = 1

(1+|p|2)
3
2
A(p), ∀p ∈ R2n+1, so that

T u = tra
(
Ã(Du)D2u

)
. Moreover we can write Ã(p) = σ̃(p)σ̃(p)T , where

σ̃(Du) =
1

(1 + |p|2)
3
4

 −uyux
1


5 Viscosity solutions

Here we prove Theorem (1.1). We refer the reader to [3], [9] for a complete
exposition regarding the theory of viscosity solutions. If k is a prescribed
continuous function, non-negative and strictly increasing with respect to
u, then F is proper according the definition in [3] and then the comparison
principle for F holds. Anyway, since we are interested even at the case when
the characteristic curvature is constant, we would like to have a comparison
principle for F also when k is not strictly increasing with respect to u, but
it does not depend on x. We will adapt the proof for the strictly monotone
case: in order to do that we need two standard lemmas and we refer the
reader to [3] for the proofs.

Lemma 5.1. Let Ω ⊆ R2n+1 and u ∈ USC(Ω), v ∈ LSC(Ω). We define

Mε = sup
Ω×Ω

(
u(x)− v(y)− |x− y|

2

2ε

)
with ε > 0. Let us suppose there exists (xε, yε) ∈ Ω× Ω, such that:

lim
ε→0

(
Mε − (u(xε)− v(yε)−

|xε − yε|2

2ε
)

)
= 0

Then we have:

i) lim
ε→0

|xε − yε|2

ε
= 0

ii) lim
ε→0

Mε = u(x̂)− v(x̂) = sup
Ω

(u(x)− v(x))

where x̂ is the limit of xε (up to subsequences) as ε→ 0.
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Lemma 5.2. Let Σi ⊆ Rni be a locally compact set and ui ∈ USC(Σi), for
i = 1, . . . , k. We define: Σ = Σ1 × . . .× Σk, w(x) = u1(x1) + . . . + uk(xk),
where x = (x1, . . . , xk) ∈ Σ, and n1 + . . .+nk = 2n+ 1. Let us suppose that
x̂ = (x̂1, . . . , x̂k) is a local maximum for w(x) − ϕ(x), where ϕ ∈ C2 in a
neighborhood of x̂. Then, for every ε > 0, there exist Λi ∈ S(ni) such that

(Dxiϕ(x̂),Λi) ∈ J
2,+
Σi ui(x̂i), for i = 1, . . . , k

and the diagonal blocks matrix {Λi} satisfies

−
(

1

ε
+ ||Φ||

)
Id ≤

 Λ1 . . . 0
...

. . .
...

0 . . . Λk

 ≤ Φ + εΦ2

with Φ = D2ϕ(x̂) ∈ S(2n+ 1) and the norm for Φ is:

||Φ|| = sup{|λ| : λ is an eigenvalue of Φ} = sup{|〈Φξ, ξ〉| : |ξ| ≤ 1}

We can prove then the following result:

Proposition 5.3. (comparison principle) Let Ω ⊆ R2n+1 be a bounded open
set, and let k : Ω×R→ R be a prescribed continuous function, non-negative,
non-decreasing with respect to u and independent of x. Then the comparison
principle for F holds, namely: if u and u are respectively viscosity sub- and
supersolution of F = 0 in Ω, such that u(y) ≤ u(y) for all y ∈ ∂Ω, then
u(x) ≤ u(x) for every x ∈ Ω.

Proof. Let us define for m ∈ N, um(x) = u(x) +
1

m
h(x) with h(x) = g

(
|x|2
2

)
where g ∈ C2 and g′, g′′ > 0. We have

Dh(x) = g′x, D2h(x) = g′′x⊗ x+ g′Id

and
tra(A(Dh) D2h) ≥ g′ inf

p∈R2n+1
(tra(A(p)) = g′ > 0

Moreover we choose g in such a way that ‖h‖∞ < +∞. Our aim is to show
that

sup
Ω

(um − u) ≤ 1

m
‖h‖∞

We suppose by contradiction that for all m large enough we have

Mm = max
Ω

(um − u) >
1

m
‖h‖∞
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Since we have u(y) ≤ u(y) for all y ∈ ∂Ω, such a maximum is achieved at an
interior point x̃ (depending on m). For all ε > 0 let us consider the auxiliary

function wε(x, y) = um(x)−v(y)− |x−y|
2

2ε . Let (xε, yε) be a maximum of wε in
Ω×Ω. By Lemma (5.1) we get as ε→ 0, up to subsequences, xε, yε → x̃ ∈ Ω,
|xε−yε|2

ε = o(1), um(xε)−u(yε)→ um(x̃)−u(x̃) = Mm with um(xε)→ um(x̃)
and u(yε)→ u(x̃). We can suppose without restriction that x̃ 6= 0. Since x̃
is necessarily in Ω, for ε small enough we have xε, yε ∈ Ω. By Lemma (5.2),

there exist X,Y ∈ S(n) such that, if pε := (xε−yε)
ε , we have

(pε, X) ∈ J2,+um(xε), (pε, Y ) ∈ J2,−u(yε),

−3

ε
Id ≤

(
X 0
0 −Y

)
≤ 3

ε

(
I −I
−I I

)
(12)

Moreover um is a strictly viscosity subsolution of

F (x, um −
1

m
h(x), Dum −

1

m
Dh(x), D2um) = − g

′

m

1

f(Dum − 1
mDh(x))

where f(p) = (1+ |p|2)
3
2 . Therefore by denoting pmε = pε− 1

mDh(x) we have

g′

m
f(pmε ) ≤ f(pε)F (yε, u, pε, Y )− f(pmε )F (xε, u, p

m
ε , X) =

= tra(A(pmε )X)− tra(A(pε)Y ) + f(pε)k(u(yε))− f(pmε )k(u(xε))

Then by using (12) we have

g′

m
≤ tra(σ(pmε )Xσ(pmε )T−σ(pε)Y σ(pε)

T )+f(pε)k(u(yε))−f(pmε )k(u(xε)) ≤

≤ 3

ε

(
σ(pmε )− σ(pε)

)(
σ(pmε )− σ(pε)

)T
+ f(pε)k(u(yε))− f(pmε )k(u(xε)) ≤

≤ 3L2
σ

εm2
(g′)2|xε|2 + f(pε)k(u(yε))− f(pmε )k(u(xε))

Now we note that f(pmε ) ≈ f(pε) as m → ∞, and by hypotheses on k and
Lemma (5.1) we get k(u(x̃)− k(u(x̃)) ≤ 0, as ε→ 0. Therefore by choosing
m = ε−2 and taking the limit as ε→ 0 we obtain a contradiction.
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Proof. (of Theorem 1.1) Since we have comparison principle for both cases,
by the Perron type theorem in [9] (Proposition II.1), we have that if there
exist a subsolution u and a supersolution u for (DP ) such that u = u = ϕ on
∂Ω, then there exists a unique viscosity solution for (DP ). Therefore we are
interested in finding explicit sub- and supersolutions for (DP ). Let ρ ∈ C2

be a defining function for Ω. Let V0 = {x ∈ R2n+1 : −γ0 < ρ(x) < 0}, γ0 > 0
such that for every 0 ≤ γ ≤ γ0 the cylinder Ωγ

c still satisfies (1), where Ωγ =
{x ∈ R2n+1 : ρ(x) < −γ}. Let {ϕε}ε>0 be a sequence of smooth functions
uniformly convergent to ϕ on ∂Ω; let finally ϕ̃ε be a smooth extension of ϕε
on Ω. We define uε(x) = ϕ̃ε(x) + λρ(x) and uε(x) = ϕ̃ε(x) − λρ(x), with
λ > 0. It holds uε = uε = ϕε on ∂Ω and for λ large enough we have uε ≤ uε
on V0. Now by (1), for every x ∈ V0, one has:

lim
λ→∞

−tra(Ã(Duε)D
2uε) + k(x, uε) = −CΩγc

x + k(x, s) ≤ 0;

lim
λ→∞

−tra(Ã(Duε)D
2uε) + k(x, uε) = CΩγc

x + k(x, s) ≥ 0.

Let x0 be the center of the smallest ball B(x0, R) containing Ω and let us
introduce the function h(x) = −

√
R2 − |x|2, so that tra(Ã(Dh)D2h) = 1/R.

We define

vε =

{
uε(x) ∀x ∈ V0

h(x)−M1 ∀x ∈ Ω \ V0
, vε =

{
uε(x) ∀x ∈ V0

M2 ∀x ∈ Ω \ V0

with M1 ≥ supV0(h(x) − uε) and M2 ≥ supV0 uε. Therefore vε and vε are
respectively sub- and supersolution of (DP ) with boundary datum ϕε. Then
there exists a unique viscosity solution of (DP ). From comparison principle

sup
Ω
|uε − uε′ | = sup

∂Ω
|uε − uε′ | = sup

∂Ω
|ϕε − ϕε′ |

Since viscosity solutions are stable with respect to uniform convergence (see
[3]) then uε uniformly converges to the unique solution of (DP).

6 Lipschitz viscosity solutions

In this section we are looking for Lipschitz continuous viscosity solutions of
(DP ). We will regularize in elliptic way our operator in order to obtain a
smooth solution uε; then we will prove a uniform gradient estimate for Duε
by using a Bernstein method and finally we will get our solution by taking
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the uniform limit of uε. For 0 < ε ≤ 1, let us set Aε(p) := A(p) + εId; then
Aε is strictly positive definite and

F ε(x, u,Du,D2u) := −tra(Ãε(Du)D2u) + k(x, u)

is elliptic. We consider the following perturbed Dirichlet Problem:{
F ε(x, u,Du,D2u) = 0 in Ω,
u(x) = ϕ(x), on ∂Ω.

(DPε)

We prove:

Proposition 6.1. Let k ∈ C1(Ω×R) and ϕ ∈ C2,α(∂Ω), 0 < α < 1. If (4)
and (5) hold, then (DPε) admits a solution uε ∈ C2,α(Ω) such that

max
Ω
|Duε| = max

∂Ω
|Duε| (13)

Proof. The first statement is a consequence of the ellipticity of F ε (see [5]).
Now let Ãε = {ãεij}, therefore we can write

−
2n+1∑
i,j=1

ãεij(Du
ε)∂iju

ε + k(x, uε) = 0 (14)

By differentiating (14) with respect to xk, we get:

−
2n+1∑
i,j=1

(
2n+1∑
l=1

∂ãεij
∂luε

∂lku
ε)∂iju

ε −
2n+1∑
i,j=1

ãεij∂ijku
ε +

∂k

∂xk
+

∂k

∂uε
∂ku

ε = 0

We multiply by ∂ku
ε and we take the sum over k:

−
2n+1∑

i,j,l,k=1

∂ãεij
∂luε

∂klu
ε∂iju

ε∂ku
ε−

2n+1∑
i,j,k=1

ãεij∂ijku
ε∂ku

ε+

2n+1∑
k=1

∂k

∂xk
∂ku

ε+
∂k

∂uε
|Duε|2 = 0

(15)
We set now vε = |Duε|2 =

∑2n+1
k=1 ∂ku

ε, so that

∂iv
ε = 2

2n+1∑
k=1

∂ku
ε∂iku

ε, ∂ijv
ε = 2

2n+1∑
k=1

(∂jku
ε∂iku

ε + ∂ku
ε∂ijku

ε)

By substituting in (15), we have

−
2n+1∑
i,j,l=1

1

2

∂ãεij
∂luε

∂iju
ε∂lv

ε −
2n+1∑
i,j=1

1

2
ãεij∂ijv

ε+
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+
2n+1∑
i,j,k=1

ãεij∂jku
ε∂iku

ε +
2n+1∑
k=1

∂k

∂xk
∂ku

ε +
∂k

∂uε
vε = 0 (16)

By Schwarz theorem and by (14), it holds:

2n+1∑
i,j,k=1

ãεij∂jku
ε∂iku

ε ≥
(
∑2n+1

i,j=1 ã
ε
ij∂iju

ε)2

trÃε
≥ (1 + vε)

1
2k2

Therefore by using (16) and hypothesis (5) we get

2n+1∑
i,j=1

1

2
ãεij∂ijv

ε +
2n+1∑
i,j,l=1

1

2

∂ãεij
∂luε

∂iju
ε∂lv

ε − ∂k

∂uε
vε =

=
2n+1∑
i,j,k=1

ãεij∂jku
ε∂iku

ε +

2n+1∑
k=1

∂k

∂xk
∂ku

ε ≥

≥ (1 + vε)
1
2k2 −

2n+1∑
k=1

∣∣∣∣ ∂k∂xk
∣∣∣∣ vε 1

2 ≥ vε
1
2

(
k2 −

2n+1∑
k=1

∣∣∣∣ ∂k∂xk
∣∣∣∣
)
≥ 0

We can apply the classic maximum principle for elliptic operators (see [5])
and we obtain that maxΩ |vε| = max∂Ω |vε|; therefore (13) holds.

Now we write Duε = (Duε)τ + (Duε)ν , where (Duε)τ and (Duε)ν are re-
spectively the tangential and normal component of Duε with respect to ∂Ω:
we need to estimate (Duε)ν = 〈Duε, ν〉 = ∂uε

∂ν , where ν is the outer normal
to ∂Ω. Then we have:

Proposition 6.2. Let uε ∈ C2,α(Ω) be a solution of (DPε). If (3) holds
then there exists C0 depending on |uε|, Dϕ,D2ϕ, such that:

sup
∂Ω

∣∣∣∣∂uε∂ν

∣∣∣∣ ≤ C0 (17)

Proof. Let ρ ∈ C2,α be a defining function for Ω. Let V0 = {x ∈ R2n+1 :
−γ0 < ρ(x) < 0}, γ0 > 0 such that for every 0 ≤ γ ≤ γ0 the cylinder Ωγ

c

still satisfies (3) where Ωγ = {x ∈ R2n+1 : ρ(x) < −γ}. Let ϕ̃ be a smooth
extension of ϕ on Ω. We define, for any λ > 0:

u(x) = ϕ̃(x) + λρ(x), u(x) = ϕ̃(x)− λρ(x)
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We have u = u = ϕε on ∂Ω and u ≤ uε ≤ u on {ρ = −γ0}, for

λ > max{ 1

γ0
(max

Ω
ϕ̃+ max

Ω
|uε|), 1

γ0
(min

Ω
ϕ̃−max

Ω
|uε|)}

Therefore u ≤ uε ≤ u on ∂V0. Now by (3), since ∆ρ > 0 is strictly positive
in a neighborhood of ∂Ω, we have for λ large:

−tr(Ãε(Du)D2u)+k(x, u) = −tr(Ã(Du)D2u)+k(x, u)−ε(∆ϕ̃+λ∆ρ) ≤ 0;

−tr(Ãε(Du)D2u)+k(x, u) = −tr(Ã(Du)D2u)+k(x, u)−ε(∆ϕ̃−λ∆ρ) ≥ 0.

From the comparison principle we obtain u ≤ uε ≤ u on V0; then we have

∂u

∂ν
≤ ∂uε

∂ν
≤ ∂u

∂ν
, on ∂Ω

Next we estimate uε on Ω:

Proposition 6.3. Let uε ∈ C2,α(Ω) be a solution of (DPε). If (2) holds
then:

sup
Ω
|uε| ≤ sup

∂Ω
|uε|+ C1 (18)

Proof. Let x0 be the center of the smallest ball B(x0, R) containing Ω and
let v(x) =

√
R2 − |x|2. By direct computation (4v ≤ 0 on Ω)

F ε(v) = −tr(Ã(Dv)D2v) + k(x, v) + ε4v ≤ − 1

R
+ k(x, v) ≤ 0;

F ε(−v) = tr(Ã(D(−v))D2(−v)) + k(x,−v)− ε4v ≥ 0.

Therefore F ε(v) ≤ F ε(uε) and

sup
Ω

(v − uε) ≤ sup
∂Ω

(v − uε), inf
Ω

(uε − v) ≥ inf
∂Ω

(uε − v)

Analogously F ε(uε) ≤ F ε(−v) and sup
Ω

(uε + v) ≤ sup
∂Ω

(uε + v). As we have

v ≥ 0 on Ω, we proved the desired estimate.

Finally, by the stability of viscosity solutions with respect to uniform conver-
gence, by putting together Propositions (6.1), (6.2), (6.3), we have proved
Theorem (1.3).
Next we prove a non-existence result on balls, when the prescribed curvature
is a positive constant, following the idea in [1].
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Proposition 6.4. Let B ⊆ R2n+1 be the ball with center x0 and radius R
and let us suppose that k is a positive constant. If u is a Lipschitz continuous
viscosity solution of F = 0 in B, then necessarily it holds R ≤ 1/k.

Proof. Let 0 ≤ r ≤ R and let us consider the function φ(x) = M −√
r2 − |x− x0|2, for some constant M . We have that φ ∈ C2(B) and

tra(Ã(Dφ)D2φ) =
1

r

By the Lipschitz regularity of u on B we can choose M such that u − φ
has a maximum at an interior point x̄ ∈ B; then we get (u is a viscosity
subsolution of F = 0 as well) F (x̄, u(x̄), Dφ(x̄), D2φ(x̄)) ≤ 0, that is:

k ≤ tra(Ã(Dφ(x̄))D2φ(x̄)) =
1

r

for every 0 ≤ r ≤ R. This ends the proof.

7 Some examples and counterexamples

Here we show by easy counterexamples that the Strong Comparison Princi-
ple and the Hopf Lemma do not hold for the characteristic operator T .

Example 7.1. Let us consider the ball B := B(0, R) ⊆ R2n+1. We define
the two functions u, v : B → R

u(x) = −
√
R2 − |x2n+1|2, v(x) = −

√
R2 − |x|2

We have {
T (u) = T (v) = 1/R in B
u ≤ v, in B

and u(x) = v(x) for all the x ∈ B of the form x = (0, . . . , 0, x2n+1).

Example 7.2. Let us consider the two functions of the previous example.
Let

D = {x ∈ R2n+1, s.t. g(x) < 0}, g(x) = x2
2 + . . .+ x2

2n+1 − x1.

We set Ω := B ∩D. Let p = (0, . . . , 0) ∈ ∂Ω, then

ν = −Dg(p) = (1, 0, . . . , 0), Du(p) = Dv(p) = 0
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We have 
T (u) ≥ T (v) in Ω

u < v, in Ω \ {p}, p ∈ ∂Ω
u(p) = v(p) p ∈ ∂Ω

and
∂u

∂ν
(p) =

∂v

∂ν
(p) = 0.

Next we give some explicit examples of domains with the related character-
istic curvature.

Example 7.3 (characteristic curvature of the spheres). Let us consider
H(x, y) = (1/2)(|x|2 + |y|2) as Hamiltonian function; for any positive con-
stant E the isoenergetic surface of H is a sphere S2n+1

R of radius R =
√

2E

and we have CS
2n+1
R = 1/R.

Example 7.4 (characteristic curvature of cylinder type domains - 1). Let
us consider H(x, y) = (1/2)|x|2 as Hamiltonian function in R2×R2; for any
positive constant E the isoenergetic surface of H is a cylinder C1 = S1

R×R2

with circles of radius R =
√

2E and we have CC1 = 0.

Example 7.5 (characteristic curvature of cylinder type domains - 2). Let
us consider H(x, y) = (1/2)(x2

1 + y2
1) as Hamiltonian function in R2 × R2;

for any positive constant E the isoenergetic surface of H is a cylinder C2 =
S1
R × R2 with circles of radius R =

√
2E and we have CC2 = 1/R.

Remark 7.6. By the previous two examples we see that the two isometric
hypersurfaces C1 and C2 in R2×R2 have different characteristic curvature:
indeed the isometry that exchanges x2 to y1 is not a symplectic diffeomor-
phism.

References

[1] E. Bedford, B. Gaveau, Hypersurfaces with Bounded Levi Form,
Indiana University Journal, 27, No. 5 (1978), 867-873.

[2] A. Bogges, CR Manifolds and the Tangential Cauchy-Riemann Com-
plex, Studies in Advanced Mathematics, 1991

[3] M.G. Crandall, H.Ishii and P.L. Lions, User’s guide to viscosity
solutions of second order Partial differential equations. Bull. Amer.
Soc. 27, (1992), pp 1-67.

16



[4] F. Da Lio, A. Montanari, Existence and Uniqueness of Lips-
chitz Continuous Graphs with Prescribed Levi Curvature, Ann. Inst.
H. Poincar Anal. Non Linaire 23 (2006), no. 1, 128.

[5] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations
of second order, second edition, Springer-Verlag, 1983

[6] H. Hofer, E. Zehnder, Symplectic invariants and Hamiltonian dy-
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